Gayoung Park

rabbithood2580@gmail.com | linkedin.com/in/gy-park

RESEARCH INTERESTS

- Data Center Power Electronics
 - Power Electronics for Transportation Electrification
- Renewable Energy Integration
- Application of Optimization Theory

EDUCATION

Seoul National University, Seoul, South Korea	Mar. 2023 — Present
M.S. student in Electrical and Computer Engineering	GPA: 3.98/4.3
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Exchange student in Electrical Engineering	Feb. 2022 — Jun. 2022
Seoul National University, Seoul, South Korea B.S. in Electrical and Computer Engineering (Honors: Summa cum laude)	Mar. 2018 — Feb. 2023 GPA: $3.93/4.3$

RESEARCH EXPERIENCES

40 kW Isolated DC-DC Converter Development for Bidirectional EV Fast Charger

Graduate Student Researcher Advisor: Prof. Shenghui Cui

- Designed a high-density SiC-based dual-active bridge converter for a fast DC charger in collaboration with LG Innotek.
- Optimized the physical design of a high-frequency transformer through experimental iteration to enhance efficiency.
- Developed an optimization process to determine the optimal leakage inductance and turns ratio of the transformer.
- Proposed an optimal modulation scheme for the DAB converter, maximizing ZVS capability and minimizing rms current.
- Analyzed the soft-switching characteristics of the DAB converter to reduce switching and conduction losses.

Analysis of Grid-Forming Control for Inverter-Based Resources and Control System Design

Graduate Student Researcher Advisor: Prof. Shenghui Cui

- Developed an experimental setup for hardware-in-the-loop simulation of GFM control, in collaboration with Korea Electric Power Corporation Research Institute.
- Designed a versatile control system based on the TMS320F28379D MCU, incorporating peripherals-ADC, ePWM, etc.
- Investigated FRT strategies and current limitation techniques for GFM control in 3-level voltage source converters.
- Proposed a stable and fast power-voltage control method for IBRs in weak grids using online nonlinear optimization.
- Conducted research on the integration of supercapacitor-based ESSs to provide active inertia power in GFM control.

Development of Core Technology for High-Temperature Superconducting Magnets

Graduate Student Researcher

Advisors: Prof. Shenghui Cui, Prof. Seungyong Hahn

• Assisted in setting up experiments to investigate superconducting magnet operation under a half-bridge inverter, in collaboration with the SNU Applied Superconductivity Laboratory.

3.2 kW Titanium Plus Power Supply Development for Data Center Power Delivery

Undergraduate Student Researcher Advisor: Prof. Shenghui Cui

- Supported the design of a high-efficiency totem-pole bridgeless PFC using SiC and GaN devices for data center power supplies, in collaboration with LG Innotek.
- Conducted research on modulation schemes for totem-pole bridgeless PFC and analyzed efficiency measurement data.

Development of Gate Driver Circuit for 3-Phase 2-Level Voltage Source Converter

Exchange Undergraduate Student Researcher Advisor: Prof. Drazen Dujić

• Designed and tested a gate driver circuit for voltage sensing and interfacing with a 3-phase 2-level VSC.

Jan. 2023 — Present Seoul, South Korea

Sep. 2023 — Present

Seoul, South Korea

Jan. 2023 — Mar. 2023 Seoul, South Korea

Feb. 2022 — Jun. 2022

Lausanne, Switzerland

Sep. 2022 — Feb. 2023

Seoul, South Korea

PUBLICATIONS

Journal Articles

- 1. <u>G. Park</u>, H. Kim, B.-K. Cho and S. Cui, "ZVS-Enhanced and RMS-Current-Minimized Optimal Modulation Scheme of Dual-Active Bridge Converter with Comprehensive ZVS Current Analysis," *Submitted.*
- C. Im, J. Ham, J. Maeng, G. Kim, S. H. Park, J. Kim, J. Lee, <u>G. Park</u>, J. T. Lee, K. Choi, U. Bong, S. Cui, S. Hahn and S. Lee, "Nonlinear Characteristics of Metal-Insulated REBCO Magnet Under Various Switching Frequencies of Half-Bridge Inverter Circuit," in IEEE Transactions on Applied Superconductivity, vol. 34, no. 5, pp. 1-6, Aug. 2024, Art no. 4604906, doi: 10.1109/TASC.2024.3370092.

Conference Papers

- 1. <u>G. Park</u>, H. Kim and S. Cui, "Optimization of Transformer Design Parameters of a 20 kW SiC-Based Dual-Active Bridge Converter for Enhanced Efficiency," 2024 IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 2024, Accepted.
- <u>G. Park</u>, J. Park, S. Cui and S. -K. Sul, "Nonlinear Optimization-Based Power-Voltage Control of Grid-Connected Converter in Weak Grid," 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2024, pp. 228-233, doi: 10.1109/APEC48139.2024.10509166.

HONORS & AWARDS

Ph.D. Study-Abroad Scholarship, Korea Foundation for Advanced Studies (KFAS) Annual research grant supporting Ph.D. studies (up to 5 years) (Selected as one of 4 recipients in Electrical Engineering in 2024)	Fall 2024 — Present
Domestic Graduate Scholarship, SBS Cultural Foundation Full tuition and monthly research grant for promising graduate students (Selected as one of 9 recipients in 2023)	Fall 2023 — Present
SNU Tomorrow's Engineers Membership (STEM) Honor society for engineering students demonstrating excellence in academic achievements	Spring 2021 — Spring 2022
Yangyoung Foundation Scholarship Full tuition support for undergraduate students with outstanding academic performance	Spring 2020 — Fall 2021
Basic Circuit Theory Project Excellence Award 1st place out of 21 teams, <i>Topic: DIY electronic music box</i>	Spring 2019
Academic Excellence Scholarship Full-ride scholarship awarded for academic excellence	Spring 2018
Hanseong Son Jae-han Scholarship Research grant for high school students with exceptional potential in scientific research	2016 - 2017
Korean Physical Society's Physics Camp for High School Girls 2nd place, <i>Topic: Piezoelectric energy harvesting soccer ball</i> Poster presentation at the 2015 KPS Fall Meeting	Summer 2015

SELECTED COURSE PROJECTS

Temperature Estimation of SiC MOSFETs based on Temperature-Sensitive Optical Parameters	Fall 2022
Course: Power Semiconductor Devices	

- Designed a light-receiving circuit considering the luminescence intensity profile of SiC MOSFETs.
- Assisted with experimental measurements of luminescence intensity and temperature under different operating currents.

Fall 2021

Winter 2024

1 kW BLDC Motor Control for Driving an Electric Scooter

Course: Design Project for Electrical Devices and Systems

• Designed a control system using the TMS320F28379D MCU and a 3-phase 2-level voltage source inverter for driving an 1 kW BLDC motor powered by a 48 V battery.

PRESENTATIONS

Lab Visit Presentation, UC Berkeley

Berkeley Power Electronics Center, University of California, Berkeley

• Presented research on development of 20 kW SiC-based dual-active bridge converter for EV charger, as a representative of the SNU Power Electronics Center, Seoul National University.

OTHER EXPERIENCES

Teaching Assistant, Seoul National University

• Selected Research Topics in Power Electronics	Fall 2024
• Seminar on Electric Energy Conversion and Circuits for M.S. Students	Spring 2024
• Design Project for Electrical Devices and Systems: Motor Drive for Electric Scooters	Spring 2023, Fall 2023
• Introduction to Circuit Theory and Laboratory	Spring 2023
Volunteer Experience, Seoul National University	
Mentor for STEM Vision Mentoring Program	Summer 2021
— Guidance and roadmap exploration for high school students	
• Mentor for AI Tech Play	Spring 2021
— AI education program for middle school students	
• Service Award	Summer 2019
- Recognized for outstanding dedication and contributions to the E&CE student council	
• Volunteer at Summer Engineering Camp	Summer 2019
- Engineering workshops for elementary school students	
Mentor for Dream Camp	Winter 2018
- Roadmap exploration mentoring for high school students in underprivileged areas	
LANGUAGES	

Korean (Native), English (Professional working proficiency, iBT TOEFL Score: 108/120)

ADDITIONAL SKILLS

- Programming: C/C++, Python, MATLAB Simulink, LATEX
- Software: PLECS, LTspice, Altium, KiCAD, Fusion 360, Code Composer Studio, Typhoon HIL