

#### Nonlinear Optimization-Based Power-Voltage Control of Grid-Connected Converter in Weak Grid

Tuesday, February. 27th, 2024

Gayoung Park\*, Jaeyeon Park, Shenghui Cui, Seung-ki Sul

rabbithood2580@snu.ac.kr, ok6530@snu.ac.kr, cuish@snu.ac.kr, sulsk@snu.ac.kr



SPEC (SNU Power Electronics Center) Dept. of Electrical and Computer Engineering Seoul National University, Seoul, Korea

1598



1. Introduction

2. Formulation of Nonlinear Optimization Problem

3. Proposed Power-Voltage Control

4. Experimental Results

5. Conclusion

# 1. Introduction

## **Introduction: Grid Becoming Weaker**

- Penetration of inverter-based resources (IBRs) into power grid<sup>[1]</sup>
  - Losing stiff voltage source characteristic = inertia decreasing
  - Low short-circuit ratio (SCR)



< Existing and future power systems, changing due to penetration of IBRs<sup>[2]</sup> >

B. Kroposki et al., "Achieving a 100systems with extremely high levels of variable renewable energy," IEEE Power and Energy Magazine, vol. 15, no. 2, pp. 61–73, 2017.
 In et al., Villegas Pico, Hugo N., Seo, Gab-Su, Pierre, Brian J., and Ellis, Abraham. Research Roadmap on Grid-Forming Inverters. United States: N. p., 2020. Web. doi:10.2172/1721727.

## **Introduction: Need of Voltage Control**

- Grid-following (GFL) control
  - Outer loop: generate current reference for power tracking
  - Inner loop: current control
  - Grid synchronization using phase-locked loop (PLL)





<sup>&</sup>lt; PLL behavior under inductive local load condition<sup>[3]</sup> >

#### Positive feedback loop

< Quasi-static PLL model considering grid interaction<sup>[3]</sup> >

#### .: Voltage control required under weak grid

[3] D. Dong et al., "Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions," in IEEE Trans. on Ind. Electron., vol. 62, no. 1, pp. 310-321, Jan. 2015.

# Introduction: How about grid-forming (GFM)?

Control of grid-connected voltage source converter (VSC)<sup>[4]</sup>



NO!

- Is GFM control a perfect solution for weak grid?
  - Slow dynamic for emulating inertia
  - Inappropriate for fast power tracking

[4] R. Rosso et al., "Grid- forming converters: Control approaches, grid-synchronization, and future trends—a review," IEEE Open J. of Ind. App., vol. 2, pp. 93–109, 2021.

GFL

Virtual inertia

vs.

# **Introduction: Motivation**

- If we want to keep the fast current source behavior in weak grid...
  - Sol1. Improve negative effect of PLL<sup>[5]</sup>
    - $\rightarrow$  No rated power injection demonstrated
  - Sol2. Modify overall structure of GFL control<sup>[6-7]</sup>
    - → Complicated tuning/modification of control structure
  - Sol3. Reshape output impedance of VSC<sup>[8]</sup>
    - $\rightarrow$  PLL BW reduction required for non-unity power factor
- In this paper,

Power-voltage control outer loop is suggested which is

- based on nonlinear optimization
- compatible with inner loop without modifying structure or reducing PLL BW
- able to inject reactive power automatically and output rated power
- [5] D. Zhu et al., "Improved design of pll controller for Icl-type grid-connected converter in weak grid," IEEE Trans. on Power Electron., vol. 35, no. 5, pp. 4715–4727, 2020.
- [6] C. Li et al., "Tuning method of a grid-following converter for the extremely-weak-grid connection," IEEE Trans. on Power Sys., vol. 37, no. 4, pp. 3169–3172, 2022.
- [7] M. Davari et al., "Robust vector control of a very weak-grid-connected voltage-source converter considering the phase-locked loop dynamics," IEEE Trans. on Power Electron., vol. 32, no. 2, pp. 977–994, 2017.
- [8] M. Li et al., "The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid," IEEE J. of Emerg. and Selec. Topics in Power Electron., vol. 9, no. 3, pp. 3229–3242, 2021.



#### 2. Formulation of Nonlinear Optimization Problem

# **Basic Idea for Proposed Power-Voltage Control**

- GFL control under weak grid
  - Necessary for fast power tracking
  - Negative impact of PLL on stability
  - Low SCR = Large grid impedance
     Inject power → PCC voltage fluctuates
- Outer loop for power-voltage control
  - Goal: to generate current reference  $\mathbf{i}_{dq}^*$  that
    - minimizes power tracking error
    - controls PCC voltage
    - keeps current below the limit







# Sequential Quadratic Programming (SQP)

- Numerical and iterative method to for nonlinear programming
- **Repeat** the sequence below:
  - 1. Formulate quadratic subproblem
    - Quadratic approximation of objective function
    - Linearization of constraints
    - ➔ Convex optimization problem
  - 2. Obtain optimal solution of subproblem
  - 3. Update optimization variable



### **Construction of Nonlinear Optimization Problem**

- Goal: to generate current reference i<sup>\*</sup><sub>dq</sub> that
  - minimizes power tracking error
  - controls PCC voltage
  - keeps filter inductor current below limit



< 2-level VSC connected to AC grid >

 $\mathbf{v}_{dq}$ : voltage at PCC  $\mathbf{v}_{g,dq}$ : ideal voltage source  $\mathbf{i}_{dq}$ : filter inductor current  $\mathbf{i}_{q,dq}$ : grid current

**Objective function:**  
Error in power tracking
$$P = \frac{3}{2} \mathbf{v}_{dq}^{\mathsf{T}} \mathbf{i}_{dq} \qquad \dots (2)$$

$$\min_{\substack{i_{dq} \\ i_{dq} \\ subject to \\ f_{\mathbf{v}}(\mathbf{i}_{dq}) = \frac{1}{2} (P - P^{*})^{2}$$

$$\operatorname{subject to } f_{\mathbf{i}}(\mathbf{i}_{dq}) = \mathbf{i}_{dq}^{\mathsf{T}} \mathbf{i}_{dq} - I_{lim}^{2} \leq 0$$

$$\int_{\mathbf{v}} (\mathbf{i}_{dq}) = \mathbf{v}_{dq}^{\mathsf{T}} \mathbf{v}_{dq} - V_{pcc}^{*}^{2} = 0$$

$$\int_{\cdots} (1)$$

$$Optimization variable: \mathbf{i}_{dq}$$

$$Solution: \mathbf{i}_{dq}^{*} = \operatorname*{argmin}_{\mathbf{i}_{dq}} f_{o}(\mathbf{i}_{dq})$$

$$I_{dq} = \mathbf{k}_{g} \mathbf{i}_{g,dq} + \mathbf{L}_{g} \frac{\mathrm{d}\mathbf{i}_{g,dq}}{\mathrm{d}t} + \omega_{e} \mathbf{J} \mathbf{L}_{g} \mathbf{i}_{g,dq} + \mathbf{v}_{g,dq}$$

$$I_{dq} = \mathbf{i}_{g,dq} + \mathbf{C}_{f} \frac{\mathrm{d}\mathbf{v}_{dq}}{\mathrm{d}t} + \omega_{e} \mathbf{J} \mathbf{C}_{f} \mathbf{v}_{dq}$$

$$\dots (3)$$

[9] P. T. Boggs and J. W. Tolle, "Sequential quadratic programming," Acta Numerica, vol. 4, p. 1–51, 1995.

# **Solving Optimization Problem using SQP**

- At  $k^{\text{th}}$  sampling instant:
  - 1. Quadratic subproblem of (1)
    - Using Lagrangian (4)

Lagrangian of (1)

$$\mathcal{L}(\mathbf{i}_{dq},\rho,\nu) = f_o(\mathbf{i}_{dq}) + \rho f_{\mathbf{i}}(\mathbf{i}_{dq}) + \nu f_{\mathbf{v}}(\mathbf{i}_{dq})$$

Quadratic approximation around  $\mathbf{i}_{dq}[k]$ 

- 2. Obtain optimal solution of (5)
  - A. Calculate partial derivatives  $f_o(\cdot), f_i(\cdot), f_v(\cdot)$  are differentiable function of  $i_{dq}$
  - B. Apply KKT condition \*Kuhn-Karush-Tucker (KKT) condition
  - C. Analytic solution obtained!

#### **Convex optimization problem**

$$\begin{split} \min_{\Delta \mathbf{i}_{dq}} \frac{\partial f_o}{\partial \mathbf{i}_{dq}} \Big|_k^\mathsf{T} \Delta \mathbf{i}_{dq} + \frac{1}{2} \Delta \mathbf{i}_{dq}^\mathsf{T} \left( \frac{\partial^2 \mathcal{L}}{\partial \mathbf{i}_{dq}^2} \Big|_k \right) \Delta \mathbf{i}_{dq} \\ \text{subject to } f_{\mathbf{i}} (\mathbf{i}_{dq}[k]) + \frac{\partial f_{\mathbf{i}}}{\partial \mathbf{i}_{dq}} \Big|_k^\mathsf{T} \Delta \mathbf{i}_{dq} \leq 0 \quad \begin{array}{c} \text{Constraint 1:} \\ \text{Current limitation} \\ f_v (\mathbf{i}_{dq}[k]) + \frac{\partial f_v}{\partial \mathbf{i}_{dq}} \Big|_k^\mathsf{T} \Delta \mathbf{i}_{dq} = 0 \quad \begin{array}{c} \text{Constraint 2:} \\ \text{Voltage control} \\ \cdots (5) \\ \\ k : \text{ partial derivate around } \mathbf{i}_{dq}[k] \end{split}$$

subject to  $f_{i}(\mathbf{i}_{da}) = \mathbf{i}_{da}^{\mathsf{T}}\mathbf{i}_{da} - I_{lim}^{2} \leq 0$ 

 $f_{\mathbf{v}}(\mathbf{i}_{da}) = \mathbf{v}_{da}^{\mathsf{T}} \mathbf{v}_{da} - V_{pcc}^* = 0$ 

 $\min_{\mathbf{i}_{dq}} f_o(\mathbf{i}_{dq}) = \frac{1}{2} (P - P^*)^2$ 

# 3. Proposed Power-Voltage Control

# **Analytic Derivation of Optimal Solution**

- Case divided based on equality establishment of current constraint
  - Active case: O.P. = voltage circle ∩ current limit circle (equality)
  - **Inactive** case: O.P. = voltage circle  $\cap$  power tracking line (inequality)



# **Analytic Derivation of Optimal Solution**

- KKT condition applied for each case to derive analytic solution
  - Optimal solution (8) satisfies current limitation
- Generates  $\mathbf{i}_{dq}^*[k]$ 
  - Step size ratio α
    - Related to stability
    - Experimentally set (α = 0.1)

#### Current reference and optimal solution

$$\mathbf{i}_{dq}^{*}[k] = \mathbf{i}_{dq}[k] + \alpha \Delta \mathbf{i}_{dq}^{opt} \qquad \cdots (8)$$
$$\Delta \mathbf{i}_{dq}^{opt} = \begin{cases} \Delta \mathbf{i}_{dq}^{inact} & ||\mathbf{i}_{dq}[k] + \mathbf{i}_{dq}|| < I_{lim} \\ \Delta \mathbf{i}_{dq}^{act} & otherwise \end{cases}$$

$$\Delta \mathbf{i}_{aq}^{cr} = -\begin{bmatrix} \frac{\partial f_i}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} + \frac{1}{2} \Delta \mathbf{i}_{dq}^{\mathsf{T}} \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{i}_{dq}} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{i}_{dq}} \end{pmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$f_{v}(\mathbf{i}_{dq}[k]) + \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$f_{v}(\mathbf{i}_{dq}[k]) + \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$f_{v}(\mathbf{i}_{dq}[k]) + \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$f_{v}(\mathbf{i}_{dq}[k]) + \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$\Delta \mathbf{i}_{dq}^{cr} = -\begin{bmatrix} \frac{\partial f_{i}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \begin{bmatrix} f_{i}(\mathbf{i}_{dq}[k]) \\ f_{v}(\mathbf{i}_{dq}[k]) \end{bmatrix}$$
  
$$\cdots (6)$$
  
$$Case 2: inactive solution$$
  
$$\lim_{diag} \frac{\partial f_{o}}{\partial \mathbf{i}_{dq}} + \frac{1}{2} \Delta \mathbf{i}_{dq}^{\mathsf{T}} \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{i}_{dq}} \\ \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \\ \frac{\partial f_{v}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$\lim_{diag} \frac{\partial f_{o}}{\partial \mathbf{i}_{dq}} \end{bmatrix}_{k}^{\mathsf{T}} \Delta \mathbf{i}_{dq} = 0$$
  
$$\sum_{i=1}^{\mathsf{T}} \sum_{i=1}^{\mathsf{T}} \sum_{i=1}^{\mathsf$$

### **Proposed Power-Voltage Control Outer Loop**

- Compatible with PLL and current control inner loop
- No need to modify control structure or tune PLL bandwidth



< Control structure of the VSC with the proposed nonlinear optimization-based power-voltage control >

# 4. Experimental Results

#### **Experimental Setup**



| Symbol          | Parameter                 | Value | Unit              |                                | Symbol          | Parameter                                   | Value  | Unit  |
|-----------------|---------------------------|-------|-------------------|--------------------------------|-----------------|---------------------------------------------|--------|-------|
| V <sub>dc</sub> | DC-link voltage           | 450   | V                 |                                | $f_{sw}$        | Inverter switching frequency                | 10     | kHz   |
| $V_g$           | Grid line-to-line voltage | 220   | V                 |                                | $f_s$           | Inverter sampling frequency                 | 10     | kHz   |
| $f_g$           | Grid line frequency       | 60    | Hz                |                                | α               | Step size ratio of power-voltage controller | 0.1    | _     |
| $S_n$           | Rated power               | 5.8   | kVA               | SCR=2                          | $k_{pc}$        | Proportional gain of current controller     | 7.54   | _     |
| $L_g$           | Grid inductance           | 11.1  | mH <mark>(</mark> | $(Z_{L_g} = 0.5 \text{ pu})$   | k <sub>ic</sub> | Integral gain of current controller         | 502.65 | _     |
| $L_f$           | Filter inductance         | 1.2   | mH (              | $(Z_{L_f} = 0.054 \text{ pu})$ | $k_{pp}$        | Proportional gain of PLL <sup>[10]</sup>    | 0.97   | _     |
| $C_{f}$         | Filter capacitance        | 35    | μF (              | $(G_{C_f} = 0.11 \text{ pu})$  | $k_{ip}$        | Integral gain of PLL <sup>[10]</sup>        | 24.29  | —     |
|                 |                           |       |                   | <b>j</b>                       |                 |                                             |        | 10 50 |

[10] D. Yang et al., "Symmetri- cal PLL for SISO Impedance Modeling and Enhanced Stability in Weak Grids," IEEE Transactions on Power Electronics, vol. 35, pp. 1473–1483, Feb. 2020.

### **Experimental Result: Voltage Control**

- Outer loop switched from conventional GFL to proposed method at t = 0
- Current reference is generated to
  - Control power to be 0 [W]
  - Inject reactive power automatically
  - Control PCC voltage to  $V_{pcc}^*$





## **Experimental Result: Power Tracking**



# 5. Conclusion

### Conclusion

- Construction of optimization problem for power-voltage control
  - Minimization of power tracking error
  - Control of voltage at PCC for stable power transfer
  - Generation of optimal current reference considering converter rating
- Proposed power-voltage control outer loop
  - Compatible with conventional current controller and PLL
  - No additional gain tuning of current controller / reduction of PLL bandwidth
  - Real-time implementation available by deriving analytic solution<sup>[11]</sup>
- Contributions and Limitations

(+) Fast and stable rated power injection under weak grid of SCR = 2

(-) Complicated stability analysis

[11] J. Park, H. -J. Cho, H. Kim and S. -K. Sul, "Online Torque Control of IPMSM for Flux Weakening Operation Using Sequential Quadratic Programming," 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 2023, pp. 4750-4755.

# Thank you



# **Appendix: KKT Condition**

- Need to be satisfied to solve an arbitrary optimization problem using Lagrangian function
- Necessary and sufficient condition of convex optimization
- KKT Conditions:
  - 1. Satisfy primal constraints

$$g_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0$$

subject to 
$$g_i(\mathbf{x}) \le 0, i = 1, ..., m$$
  
 $h_j(\mathbf{x}) = 0, j = 1, ..., k$ 

 $f(\mathbf{r})$ 

2. Satisfy dual constraints

$$\mathcal{L}(\mathbf{x},\lambda,\nu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{k} \nu_j h_j(\mathbf{x}), \qquad \lambda_i \ge 0$$

- 3. Complementary slackness  $\lambda_i g_i(\mathbf{x}^*) = 0$
- 4. Gradient of Lagrangian is 0 w.r.t opt. variable  $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \nu) = 0$

## **Appendix: Negative Power Injection**

- Available to inject negative power up to -1 pu
  - Larger oscillation in power at steady state



## **Appendix: Step Size Ratio and Stability**

- How much will you move toward the 'current' optimal point?
  - Current optimal point  $\neq$  final destination
  - Though, constraints should be satisfied at every point
- With small step size ratio, takes long time to reach new steady state
  - Equivalent BW of proposed outer loop can be calculated as  $\alpha\omega_{cc}$

